Superconnectivity of Bipartite Digraphs and Graphs

C. Balbuena, A. Carmona
Departament de Matemàtica Aplicada III
J. Fàbrega, M.A. Fiol
Departament de Matemàtica Aplicada i Telemàtica
Universitat Politècnica de Catalunya

Abstract

A maximally connected digraph G is said to be super-κ if all its minimum dis-connecting sets are trivial. Analogously, G is called super-λ if it is maximally arc-connected and all its minimum arc-disconnecting sets are trivial. It is first proved that any bipartite digraph G with diameter D is super-κ if $D \leq 2\ell - 1$, and it is super-λ if $D \leq 2\ell$, where ℓ denotes a parameter related to the number of short paths. These results allow us to show that if the order of a bipartite digraph G is big enough then superconnectivity is attained. For instance, if G is d-regular and has diameter $D = 3$ and $\ell \geq 1$, then G is super-λ if $n > 4d$; and if $D = 4$ and $\ell \geq 2$, then G is super-κ if $n > 4d^2$. In these cases the results are proved to be best possible. Similar results are given for bipartite (undirected) graphs. (For a graph it turns out that $\ell = (g - 2)/2$, where g stands for the girth.)

Key words. bipartite (directed) graph, superconnectivity, diameter, girth, order, line digraph

AMS subject classification. 05C40, 05C20

References

*Work supported in part by the Spanish (Comisión Interministerial de Ciencia y Tecnología, under projects TIC 94-0592 and TIC 97-0963. e-mail: balbuena@etseccpb.upc.es

